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Structure and mechanical behaviour of short 
glass fibre-reinforced 
ethylene-tetrafluoroethylene copolymers 
Part II Description of the mechanical behaviour using 
theological models 

E. M. WEIS, W. WILKE 
Abteilung for Experimentelle Physik, Universit6t U/m, Albert Einstein-A/lee 11, D-7900 U/m, 
Germany 

The mechanical behaviour of a copolymer, consisting of ethylene, tetrafluoroethylene, 
hexafluoropropylene and perfluoropropylvinylether, unfilled and filled with short glass fibres 
has been investigated for strains less than 5%. Different deformation modes at room 
temperature and at 80 ~ were recorded with a video system. The resulting stress-strain, 
relaxation and shrinkage curves are described with a model consisting of seven basic 
rheological elements of three different types: spring (Hooke model), dashpot (Newton model) 
and slip-element (St. Venant model). This seven-element model gives a very good 
approximation of all the investigated deformation modes and allows an interpretation of 
relaxation and retardation times of polymer segments. The plastic deformation, described by 
the slip-element, is assumed to be caused by slip processes in the highly disordered 
crystallites of the copolymer matrix. 

1 .  I n t r o d u c t i o n  
Ethylene-tetrafluoroethylene copolymers (ETFE) 
show very remarkable mechanical, chemical and ther- 
mal properties. In Part I [1] we found, that when filled 
with short glass fibres, the mechanical properties of 
the studied quaterpolymer, which are good in the 
unfilled state, are further improved. This effect is due 
to the influence of the fibres on the superstructure of 
the matrix material, whilst the crystal structure, 
characterized by great longitudinal disorder, as well as 
the crystallinity are not'changed. Because of the high 
degree of disorder in the crystallites, this polymer does 
not correspond to semicrystalline polymers in the 
usual sense, where we have a disordered amorphous 
phase and a highly ordered crystalline phase. 

Our aim was to find a simple way of describing the 
mechanical behaviour for small strains, where fibre 
debonding has not yet occurred. The deformation 
region below the yield-point was of special interest. 
Large deformations and material failure were not 
considered. With the help of basical rheological ele- 
ments we wanted to relate the obtained relaxation and 
retardation times to the microscopic characteristics of 
the material. In order to obtain as much information 
as possible, different kinds of deformation processes 
were carried out. 

2 .  E x p e r i m e n t a l  p r o c e d u r e  
2.1. Samples 
The chemical composition of the studied matrix ma- 

terial (as provided by Hoechst) was: 49.2 tool % ethyl- 
ene (ET); 47.0mol % tetrafluoroethylene (TFE); 
3.6 mol % hexafluoropropylene (HFP); 0.17mol % 
perfluoropropylvinylether (PPVE). The characteristic 
data of this material and of the glass fibres (diameter 
10 gm, aspect ratio 1.20) used for filling, are given in 
[1]. 

The geometry of the investigated specimens, very 
important for this study to determine the strain values 
in the correct way, is shown in Fig. l. 

2.2. Deformation processes 
For the unfilled material and filler contents, wf, of 10 
and 20wt %, a set of experiments was conducted at 
testing temperatures of 23 and 80 ~ (the method of 
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Figure 1 Geometry of the used specimen. 
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2.2. 1. Uniaxial tensile test (Fig. 2) 
First a uniaxial tensile test (deformation rate set at the 
testing machine 2.78 x 10 - 4  S -a ) was carried out until 
the yield-point (ey, C~y) was reached (I). From the 
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Figure 2 Uniaxial tensile test up to the yield point (Process I). 

resultant stress-strain curve, the value for the stress, 
cr o, at a strain of about 4% was determined, in order 
to have a measure of the point at which to interrupt 
the following processes at about equivalent strains. 

2.2.2. Relaxation test (Fig. 3) 
A uniaxial tensile test (II) made under the same condi- 
tions as for the uniaxial tensile test, was stopped at ~o 
(Fig. 3a). The strain, e, was then held at a constant 
value, eo, and the development of stress with increas- 
ing time, t, was recorded (III) for about 1 h (Fig. 3b). 

2.2.3. Cycle with subsequent relaxation test 
(Fig. 4) 
After stopping the tensile test at ~o(IV) the specimen 
was relaxed in a controlled manner: the clamps were 
moved together with the same absolute value of the set 
velocity ( v = - - 2 . 7 8 x 1 0 - g s  -1 )  until the stress 
reached zero (V). The stress-strain curve was recorded 
(Fig. 4a). When zero stress was reached, the length of 
the sample (strain eb) w a s  held constant and the 
increasing stress, o, with increasing time, t, was re- 
corded for about �89 (VI, Fig. 4b). 
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Figure 3 Relaxation experiment: (a) Process II, (b) Process III. 
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Figure 4 Cycle and relaxation experiment: (a) Processes IV and V, 
(b) Process VI. 



2.2.4. Retardation test (Fig. 5) 
After the tensile test was stopped at c%(VlI) (Fig. 5a), 
one of the clamps, fixing the specimen, was opened, so 
that the sample was able to shrink freely (Fig. 5b). It 
was observed that when the clamp was opened, the 
sample immediately shrunk from eo to e~. The strain, 
e, then diminished with increasing time, t (VIII). 

In order to ensure that in the deformation region of 
interest no physical damage occurred, acoustic emis- 
sion experiments were carried out during uniaxial 
tensile tests at room temperature. Only in the case of 
the sample filled with 20wt % fibres was acoustic 
emission activity recorded towards the end of the 
examined deformation region. This fact must be kept 
in mind, when interpreting the results. 

2 . 3 .  M e a s u r e m e n t  o f  s tra in  
As opposed to the mechanical experiments described 
in Part I [1], where the relative behaviour of filled to 
unfilled material was of interest, it is necessary here to 
determine the true strain, in order to describe the 
mechanical behaviour. In Part I, the distance between 
the clamps, fixing the specimen, was used as a measure 
of strain, but this determines (see Fig. 1) only a mean 
value over the specimen. Thus for the computation the 
true strain, e, in the centre of the specimen, measured 

with the help of a video camera, was used. As shown in 
Fig. 6, the centre of the specimen was marked with 
lines, a distance, l, of about 1 mm apart (the exact 
value measured in pixel points on the screen in the 
unstretched state). Using a video camera, this part of 
the specimen was recorded during deformation and 
therefore it was possible to determine the strain e(t). 
The applied load, F, and the time, t, were also 
recorded. Thus from each video picture it was possible 
to compute the following data: 

strain e = ( I  - I o ) / I o ;  applied load, F; cross-section, 
Ao (unstretched specimen). 

The slope of c~(e) at the origin gives modulus E. 
As expected very different values were obtained (see 

Fig. 7) when comparing the stress-strain curves of 
ETFE using the clamp distance and the video-records 
for the evaluation of the strain. 

For the computation not only the true strain, e, but 
also the development of e with time, t, is required. To 
obtain this dependence, e ( t ) ,  in analytical form the 
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Figure 5 Retardation experiment: (a) Process VII, (b) Process VIII. 

Figure 6 Video picture of the specimen during deformation with 
faded-in applied load, F (upper left corner) and time, t (upper right 
corner). 
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Figure 7 Comparison of stress-strain curves of the same 
measurement (vr = 0, T = 23 +C), evaluated (O) using video records 
and (O) using distance between clamps. 
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following approach was used 

e = b t  2 -F vt  (1) 

which reproduces the experimental data very well, as 
can be seen in Fig. 8. 

When evaluating the data for the return phase in the 
cycle, it was found that the dependence e ( t )  was nearly 
linear 

e = - I v R j t  (2) 

The values of Va, lying in the same order as the set 
value at the testing machine, and the values for b are 
given in Table I (in the experiments, v always equals 
zero). 

3. The appl ied model  
The model used to describe the deformation processes 
discussed above, consists of seven basic elements of 
three different types (see Fig. 9). Before discussing the 
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Figure 8 Time-dependent development of strain in the middle of 
the specimen (vf = 0, T = 23 ~ (0) experimental data (video- 
evaluated) (--) fitted, using Equation 1. 

TABLE I Strain rates, determined using Equations 1 
and 2 

wf(%) T(~ b(10-Vs -2) vR(10-4s -1) 

0 23 1.93 2.52 
10 23 1.57 2.12 
20 23 1.31 1.92 

0 80 2.66 2.68 
10 80 2.54 2.30 
20 80 1.56 2.93 

applied model, these three basic elements, which are 
shown in Fig. 10, are examined. The dependences, 
o(e), for these elements are given as follows [2, 3] 

(a) spring (Hook�9 model): cr = E e  (3) 

(b) dash-pot (Newton model): o = 1"1~ (4) 

(c) slip-element (St. Venant model): 

o = % sign (~) ~ + 0 (5) 

For  a given arrangement of two elements, charac- 
terized by (cr 1, el)  and (o 2, e2) a relation can be 
determined between the total stress, o, and the total 
strain, e, by using the rules for addition: 
for parallel arrangement, e = el = e 2, cy = c h + o 2 
and for serial arrangement, e = el + e2, cr = 0 z 

CY 2 . 
Thus it is possible to compute any given arrange- 

ment of several elements. For  the model presented in 
Fig. 9, the relation between o and e is given by a linear 
differential equation of the second order, which is 
valid in the case where the slip-element remains at a 
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Figure 9 Seven-element model. 
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Figure 10 Basic elements of rheology. (a)Spring, (b)Dash-pot, 
(c) Slip element. 



given position, epo 

G l 

eEges + + -- 
\ 1;1 %2 

E3 + EN E3 
+ e e p o -  

gl T2 1~1 T2 

where 

(6) 

Eges ~-- 

r~ = n ~ / ~  (7) 

72 2 = q2/E2 (8) 

E 1 + E 2 + E 3 + E N (9) 

Before considering the above specified deformation 
processes in detail, the physical meaning of this model 
should be examined. The model used consists of seven 
elements, arranged in four branches, numbered 1-4 
(Fig. 9.) In this model only the individual branches as 
a whole have a physical meaning and not just single 
elements. 

From thermodynamical considerations [4] it is 
known that Branches 1 and 2, so called Maxwell 
elements, in combination with Branch 4 describe in- 
ternal relaxation processes, which can be related to 
microscopic characteristics using, for example, a very 
simplified model described by Malmeisters et al. [5]. 
There, stress-induced changes in the position of poly- 
mer segments are responsible for the relaxation pro- 
cesses. Maxwell elements, having different relaxation 
times, r, describe segments of different length. At- 
tempts made to describe the experimental data with 
only one relaxation process failed, so the minimum 
number of Maxwell elements must be two. The combi- 
nation of the slip element and the spring in the third 
branch offers the possibility to describe a slip process 
which does not begin before a given stress is reached. 
The present investigations enabled the observed slip 
process to be related to the crystals. Because the slip 
element describes an irreversible plastic deformation, 
this element does not move when the specimen is able 
to shrink (Processes V and VIII). The fourth branch, 
consisting of a single spring describes the elastic prop- 
erties of the material and therefore characterizes the 
physical network. 

Because the model used by Malmeisters describes 
the changes of segment-positions as a consequence of 
the applied stress, it cannot be assumed that the 
relaxation processes will remain the same when 
changing the direction of applied load, and especially 
that they will have the same relaxation times, r. Fur- 
thermore, due to the plastic deformation, the reference 
state is changed. So in the present investigations the 
set of parameters is allowed to change when changing 
the tensile conditions, denoting the characteristic 
parameters as Ea, q 1, etc., of the first set (Processes I, 
II, III, IV, VII) without primes and of the second set 
(Processes V, VI, VIII) with a prime (E l ,  q'~, etc.). 
Thus the simplest model which describes the present 
experimental data as well as required, is the seven- 
element model shown in Fig. 9 which has the possibil- 

ity to change the set of parameters when changing the 
direction of the applied load. 

The different deformation processes are now de- 
scribed. 

3.1. Uniaxial tensile test (Figs 2, 3a, 4a, ha) 
Using the above characteristics for the development of 
strain e with time t, the following process conditions 
must be considered 

e(t)  = bt z + vt (10) 

In this case the easiest way to compute the u-e  rela- 
tion is to solve the differential equations for the four 
branches of the seven-element model separately and 
then to sum the four contributions. 

In this way the following result is obtained, where 
attention must be paid to the fact that below the 
critical strain, eg = (yp/E3, the slip element remains at 
rest and for e > eg it moves 

= cH(e ) + ua(e ) + c%(e) + u,(e) (11) u(e) 

with 

%(e) = 

~ 2 ( e )  = 

u,(e) = 

rs4(e) = 

(2ql"Hb - q l v ) ( e - * / ~ , -  1) + 2 q , b t  

(2112%2b - q 2 v ) ( e  -t/v2 - 1) + 2 q 2 b t  

E3e  for e _< e~ 

Up = E 3eg for e > eg 

E~ve 

1 
t = ~ [ ( v  z + 4be) ~- - v] 

At the end of the uniaxial deformation we have 
time, to, and strain, eo, and therefore also the total 
stress, ao = U(eo), and stresses for the individual 
branches %0 = cYi (eo). If the strain e o reached is grea- 
ter than eg the new position of the slip element can be 
computed by 

%0 = e o - eg (12) 

3.2. Stress relaxation, following the tensile 
test (Fig. 3b) 

With the given condition for this process 

e(t)  = e o (13) 

the stress-strain relation is determined in the same 
way as before, adding up the contributions of the 
individual branches, giving 

U ( t )  = CYx(t ) + CYz(t ) + O'3(t) + O'4(t ) (14) 

with 
%( t )  = Uloe-~/~, 

U2( t  ) = O2oe - t /~2  

u s ( t )  = E3eo for eo -< eg 

= (Yp = E 3 eg fo r  e 0 > eg 

CY4(t) = ENeo 

where eo, ulo,  uzo are given by the previous uniaxial 
tensile test. 
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3.3. Return phase of the cycle (Fig. 4a) 
Here the second set of parameters, marked with a 
prime, is used. Using the process condition 

e(t) = e o - [ V R l t  (15) 

to solve the differential Equation 6 the following 
stress-strain relation is obtained: 

~(e) = cyl(e ) + cy2(e) + cY3(e) + cy4(e ) (16) 

with 

cYx(e) = (O'1o + [Va[q'l)e-E1/~;{vd](e~ IUR[B'1 

Cyz(e) = (c~ ~ + Ivglqh)e D/'GIVRI](eo--e)_ IVglq~ 

~3(e) = E'3 (e -  epo) 

cyg(e ) = E'Ne 

Three facts should be noted here. 

1. The slip element should not move during the 
return phase, i.e. it remains at its given positon e'po. 

2. The contributions for the four branches cannot 
be simply added up, because the set of parameters 
changes. Therefore only the sum Cr~o + %0 is given 
which results in one more free parameter when fitting 
the experimental data. 

3. For  solving the second-order differential equa- 
tion two initial conditions are required. The first, 
~(eo), is given by the condition that the total stress at 
the end of the tensile test should be the total stress at 
the beginning of return phase, and the second, describ- 
ing the behaviour of g at e o, is chosen to be analogous 
to that for a five-element model where the third 
branch of the present seven-element model is absent. 

3.4, Stress relaxation fol lowing the cycle 
( Fig. 4b) 

From the relation for the return phase (Equation 16) 
the strain, eb, can be determined, where the total stress 
reaches zero. So for the subsequent stress-relaxation 
the following condition applies: 

e(t) = e b (17) 

Because the set of parameters does not change, the 
contributions of the branches can again be summed 
and the ~- t  relation can be obtained 

c~(t) = % ( 0  + % ( 0  + % ( 0  + r (18) 

with 
% ( 0  = CY*oe-t/q 

0"2(0 = Cy~oe T_ t/''~ 

% ( 0  = E's(eb-- %0) 

cY4(t) = E'ueb 

with the constants ~*o given as follows: 

~*o = ~,(eO 

= (a'io + [VRIrl;)e-D/v;Ivd3(eo-~O--[UR[q' i 

3.5. Re t a rda t i on  e x p e r i m e n t  
Using the second set of parameters and the condition 

,~(t) = o (18) 
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for the retardation experiment, a differential equation 
of second order in strain, e, is obtained. To solve this 
equation, two initial conditions are used. First 

e(0) = e~ (19) 

where e~ is the strain given after the immediate shrink- 
age, and second the behaviour of e at t = 0. Here two 
factors are decisive: the longer one of the retardation 
times, z2~, and the difference in strain at the beginning 
(e(O) = e~) and at the end (e~o = %oE'3/(E'3 + E'u)) of 
the retardation process. So we assume 

1 
~(0) - ( e s -  e ~ )  (20) 

where 1 / ~  is given as follows (determined by using 
e(t) = exp( - 1/T~) to solve the homogeneous differ- 
ential equation) 

' E g e s  , 1 ' - E 1 E'ges - -  E 2 

~2~' ( % + ~ 2  

[(E;es- e;os- 
Lk "~'~ + ~2- 

, E'3 + E'u]a/z} /2Ege,  - 4Eg,s , ' (21) 
TILT2 

Using the above two conditions, for the development 
of strain, e, with time, t, we obtain 

( ) ' 
' E3 E3 e-t/~i~ + %o , , 

e ( t )=  e s - % O E ; + E }  E a + E  N 

(22) 

Here it must be noted that because of the change in the 
set of parameters, the strain e~ is not determined and 
therefore we have one more free parameter when 
fitting the experimental data. 

4. Comparison with experimental data 
and results 

Regarding the deformation processes we recognize 
that there are eight partial processes (I-VIII) of five 
different kinds. To fit these parts all at once, a pro- 
gramme was developed that minimizes the following 
sum: 

VIII gi nl 
~ j~=, [yo(xu) - y(xu)] 2 (23) 

i = l  . . =  

by varying the parameters, where n~ is the number of 
experimental data pairs (x u, Yu) for process i; g~ is the 
weight factor of the process i, y(xo) is the theoretical 
values of y at the experimental points x~j, computed 
for the different processes i using the above equations 
assigned as follows: 

i = I, II, IV, VII E q u a t i o n l l  
i - III Equation 14 
i = V Equation 16 
i = VI Equation 18 
i =- VIII Equation 22 

For more details see [6]; separate documentation of 
the programme is available from the authors. 

As an example of the quality of the fits in Figs 11, 12 
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relaxation experiment (cf. Fig. 3). 
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experimental data for v r = 0, T = 23 ~ 

and 13, theoretical curves compared with experi- 
mental data are shown for the measurement of an 
unfilled sample at 23 ~ For this fit and all the other 
fitted measurements the parameters giving best agree- 
ment with the experiment are listed in Table II. The 
errors are estimated to be smaller than 10%. In 
Table II the characteristic quantities of the dash-pots 
q are not listed because of greater physical importance 
of the combined quantities z given by Equations 7 and 
8. For the same reason the value of eg is used to 
characterize the slip element. 

5. Discussion 
As can be seen from Table II, the modulus, Ege~, 
increases with increasing fibre content, wf, indicating 
bonding between fibres and matrix. For the investig- 
ated composites, the critical fibre length, Ic, is smaller 
than the actual length, l. An estimation of lc gives 
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Figure 12 Fitted experimental data for vr = 0, T = 23 ~ cycle plus relaxation experiment (cf. Fig. 4). 

T A B LE II Values obtained for the parameters of the seven-element model by fitting experimental data 

wf at wr at 
T V = 23 ~ Tv = 80~ 

0wt % 10wt % 20wt % 0wt % 10wt % 20wt % 

E1 (MPa) 71 132 155 55 68 80 
z1 (s) 928 405 513 542 767 1090 
E z(MPa) 319 838 916 300 284 261 
z2(s) 49 19 26 24 40 63 
E3 (MPa) 580 697 1064 219 317 441 
eg(%) 1.55 1.38 1.07 2.11 1.37 1.57 
EN(MPa) 80 134 276 20 75 42 
E'I (MPa) 60 70 256 88 107 292 
"~'1 (s) 201 141 58 550 265 777 
E~(MPa) 327 473 375 153 281 192 

~ (s) 46 18 5 18 23 5 
E; (MPa)  0 0 0 18 2 10 
E~v(MPa) 87 99 102 61 58 84 
Cr'lo(MPa ) 0 0 0 •.1 0 4, 8 
e~(%) 0.47 0.27 0.85 1.74 0.56 0.88 

Gp(MPa) 9.0 9.6 ! 1.4 4.6 4.3 6.9 
Eges(MPa) 1050 1800 2311 594 744 825 
E'go~(MPa) 475 642 732 320 448 578 
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retardation experiment (cf. Fig. 5). 
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1r ~ 35 gm and for 1 a mean value of I ~ 100 gm was 
found. The fibre modulus is Ef = 77 GPa. For the 
composite modulus, E~, the following relation holds 
[73: 

E c ~ yvfE r 1 -- + (1 -- vf) E m (24) 
(lc < l) 

where Em is the matrix modulus, vf the volume content 
of the filler 

Uf ~m 

where Pf,m is the density of fibre, matrix, f =  6 for 
fibres with isotropic orientation, f =  3 for planar ran- 
domly oriented fibres. 

Calculated f-values from the experimental data for 
T, = 20 ~ are n e a r f  = 6, but for T, = 80 ~ are much 
higher. This result means that for T = 20 ~ the adhe- 
sion between filler and matrix is strong and at T 
= 80 ~ weak. At T = 80 ~ the glass transition re- 

gion of the ETFE matrix begins and therefore, as a 
result of the higher chain mobility, smaller stresses 
suffice to destroy the adhesion. The kind of bonding 
between fibre and matrix is very probably caused by 
the contraction during cooling. The samples show the 
effect of transcrystallinity [1], which is important for 
the composite behaviour [8]. By virtue of the trans- 
crystallinity close contacts between the microscop- 
ically rough fibre surface and the polymer chains are 
possible. The discontinuity in the E-modulus between 
fibre and semicrystalline matrix is smeared out and 
therefore stress concentrations are lowered. 

It is interesting to note, that all the above mechan- 
ical processes can be described with the relatively 
simple seven-element model. The viscoelastic part is 
characterized by two relaxation times, r~. This is an 
idealized picture; in reality we will have a spectrum of 
relaxation times. However, this simple model has the 
advantage that different processes can be described 
with analytical formulae and one can derive some mater- 
ial parameters from experiment. Because measurements 

were made with a definite strain rate, these relaxation 
times are typical for chain segment motions on this 
time scale. Creep experiments would give information 
about longer time scales; The viscoelastic deformation 
should be related to the amorphous part of the poly- 
mer matrix. The relatively long relaxation times indi- 
cate that the temperature during deformation lies 
below the glass transition temperature, Tg. Near Tg, at 
T v = 80~ the relaxation times ~1 and "[2 increase 
with filler content, wf. At this temperature the filler 
probably acts only as a geometrical hindrance for 
longer chain sequence mobility, whereas at T = 23 ~ 
the stronger adhesion and transcrystallinity masks 
this effect. Assuming a transient state model for the 
viscoelastic deformation [5], one would expect, 
that the relaxation times, Vi, for the return phase are 
longer than the relaxation times ~i. The experiments 
(Table II) show the opposite. However, r'i > ~i is only 
true, if the structure is not changed during the defor- 
mation. But in the present case we have a plastic 
deformation, described by the slip element. The onset 
of the plastic deformation is given by the strain eg, in 
the range eg ~ 1-2%.  A non-negligible part of the 
irreversible deformation in the cycle (Fig. 12) is plastic 
deformation. The strain, Cyp, clearly is only a phenom- 
enological mean value. On a microscopic scale there 
are large local fluctuations in the strains. The increase 
of ~p at wf = 20% can be explained on this basis. At 
this higher filler concentration, a local failure mech- 
anism occur, which reduces local strain and the 
change in slope in the ~-e  plot is shifted to a higher c~ v 
value. 

The plastic deformation is associated with the 
crystalline part of the matrix. The crystals are longit- 
udinally disordered, as shown by X-ray measurements 
[lJ. That the melt enthalpies of the ETFE crystals are 
smaller than the melt enthalpies for PE and PTFE 
crystals also is an indication of this. Therefore, slip 
processes are easily initiated. Assuming that plastic 
deformation is a dislocation process [9], the disloc- 
ation density can be estimated from the irreversible 
dissipated energy in the plastic part of the deformation 
cycle. The calculated dislocation densities [10] are as 
expected. The pure elastic part of the deformation is 
described by E N in the model. It is the "network" 
fraction of the deformation. The "network" is build, 
for example, by entanglements and crystals and fibres 
as netpoints. It was always found, that the pure elastic 
part EN(E'N) is smaller than Eges(E'ges). E N increases 
with wf (except for Tv = 80 ~ wf = 20%, where some 
failure may occur), showing that the fibres act like 
netpoints. The relative importance of the elastic defor- 
mation is higher for the return phase, for both temper- 
atures T v = 2 3 ~  and T v = 8 0 ~  For  T v = 2 3 ~  
from Table lI, Egos/Eu~ 13, E'ge~/E'u~(5.5-7.2), 
and for T v = 8 0 ~  Eg~jEu~(IO-30) ,  E'ge~/E~ 

(5.2-7.7). This behaviour reflects the fact that 
the plastic deformation does not play any role in the 
return phase. 
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